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The Problem: Gas Evolution 
 

• All Lead acid batteries vent hydrogen & oxygen gas 
• Flooded batteries vent continuously, under all states 
• storage (self discharge) 
• float and charge/recharge (normal) 
• equalize & over voltage (abnormal) 

• Flooded batteries vent significantly more gas than VRLA (can be 50 
times or more greater; even VRLA’s can vent significant gas 
volumes in rare cases of thermal runaway) 

• Under float, rectifier ‘overcharges’ due to chemical inefficiencies of 
electrolyte & internal resistance of cells; excess charge electrolyzes 
sulfuric acid & water which causes free hydrogen & oxygen to vent  

• Increasing the voltage/current and higher ambient temperatures 
accelerate this outgassing 



Objectives 
• Provide an overview of hydrogen gas evolution, and it’s 

impact on battery system design, operation & 
maintenance 

• Review primary methodologies for managing & 
mitigating battery outgassing 

• Introduce & discuss the external recombinant catalyst: 
how it works, critical design criteria, and it’s 
demonstrated impact on facility planning, battery 
performance, & maintenance  



Open Circuit (equilibrium) potentials:  
positive & negative electrodes (lead-acid) 
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• Hydrogen Evolution = Outgassing = “Water Decomposition” 
• As input voltage/current charge increases, the potential difference between  the positive & 

negative electrodes increases, accelerating outgassing 
• Hydrogen gas at the negative electrode, Oxygen gas at the positive 



Impact of Charging Voltage on Gas Development Rate:  
New Lead Selenium Cells  
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Impact of Charging Current & Over-Voltage 
(New Lead Selenium Cells) 
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Impact of Temperature on Charging Current & Voltage: 
(New Lead Selenium Cells- Lead Acid) 



Primary Effects & Impact of Gas Evolution 

• Fire & Explosion: Human, System & Facility Safety 
• Hydrogen combusts at 4% (LEL); vs. 0.01% 
• While rare, can be caused by abnormal conditions, e.g. malfunctioning charger, 

HVAC failure, cell failure (shorts, high resistance) 
• Battery self-discharge 

• lead-acid batteries will vent gas & discharge even in storage 
• shelf-life will vary by grid alloy type 
• batteries in storage require periodic refreshers for the equalizing of corrosion and 

to correct self-discharge 
• Watering Maintenance 

• high levels of outgassing (water decomposition) will increase watering 
maintenance & costs 

• watering rate is dependant on grid alloy, ambient temperatures,  
•      voltage charging levels, & battery age  



Primary Strategies for Mitigating Gas Evolution 

• Dedicated Rooms for Flooded Batteries 
• Codes require flooded batteries to be installed in separate rooms 
• Co-locating electrical loads w/ batteries not recommended 
• Flooded batteries typically in open, step/tier racks for access & airflow 
• Also recommended for large VRLA battery systems (2V 8x3 config’s) 

• Proper Ventilation System Design  
• Well defined standards & formulas – OSHA, ANSI/ASHRAE, IEEE; EN 
• Need to consider air movement & cooling (rule of thumb is to change room air 2x 

per hour; maintain ambient of 68° F)  
• Though Hydrogen LEL is 4%, universal guidelines specify a system design absolute 

maximum of 2%, with 1% being typical max. concentration levels 
• Proper system design requires precise Manfg’s data (MSDS sheets); competent 

airflow engineering 
• Even a good idea to have MSDS gas evolution data for VRLA installs (in the absence 

of MSDS, some Codes will then require minimum airflow of     1 CFM/sq. ft for VRLA 
battery) 



Primary Strategies for Mitigating Gas Evolution 

• Hydrogen Gas Detection Systems 
• No specific OSHA requirement 
• Increasingly cost effective means of monitoring environment 
• Typical threshold is to initiate alarm at 1% concentration, primary alarm at 2% 

for direct response (evacuation & max ventilation) 
• Can monitor multiple types of potentially hazardous gas/conditions 

 

• Minimize/Avoid Static & Electrical Discharge 
• Flooded batteries require good maintenance practices to avoid static electrical 

discharge; enough energy to ignite hydrogen/oxygen gas 
• Static electrical potential dependant on humidity, material types 
• Electrical discharge from non-insulated tools, inadvertent contact 
• Avoid high static mat’ls (plastic vinyl sheets), synthetic cloths 
• Use personal grounding straps; always use insulated tools 



Primary Strategies for Mitigating Gas Evolution: 
External Recombinant Catalysts (ERC) 

• Relatively new technology based on an old idea (e.g. Thomas Edison patent in 1912) 
• A lot of design & research on ERC in Europe (large base of older antimony and huge base of 

lead selenium batteries) 
• ERC designs now have 25+ years of laboratory and empiric field data 

 
 



External Recombinant Catalyst: Concept 

• Installed externally to flooded battery 
• Captures the bulk of hydrogen gas that escapes 

under normal float & charge/recharge 
conditions, and recombines hydrogen with free 
oxygen to form water (returned to battery) 

• Catalyst for this recombination is typically  
palladium (noble metal) to promote chemical 
recombination of hydrogen & oxygen 

• Entire assembly encased in a plastic plug, to 
capture gas, promote recombination, and direct 
water back to the battery 



External Recombinant Catalyst: Critical Design Considerations 

• Must incorporate spark/flame arrestor 
(installed over battery vent) 

• Self-limiting design to ensure safe operation 
under abnormal, high-gassing conditions (e.g. 
overvoltage); prevent overpressure  

• Easy installation & access; mounted right on 
top of battery 

• No maintenance or adjustments; should have 
life expectancy equal or better than flooded 
battery 

• Ensure complete encapsulation of palladium 
to prevent potential of palladium poisoning 



External Recombinant Catalyst: Critical Design Considerations 

• Designing the ERC to be external was a 
carefully considered choice 

• Chemical recombination is an ‘exothermic’ 
process: heat as a by-product 

• Early experience with VRLA internal 
recombinant catalysts demonstrated a 
number of potentially battery life reducing 
impacts due to increased heat generation 
inside the battery 

• External design separates recombination 
from active internal process of flooded 
battery 



External Recombinant Catalysts: Maintenance 
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External Recombinant Catalysts 

• Properly designed ERC systems should have a life expectancy of more than 20 years without 
maintenance or adjustments 

• European ERC design now has an installed base of over 3.5 million units going back almost 
25 years 

• NO recorded design failures, NO cases of palladium poisoning problems over past 25 years 
Photo shows recent battery replaced, originally installed with ERC in 1984 



ERC: Recombinant Efficiency 

• 85% + efficiencies typical in the past for stationary applications; new 
designs indicate efficiencies up to 99% (!!) for recombining out gassed 
hydrogen under normal float and charge/recharge conditions 

• EN now officially recognizes impact of ERC technology in reducing 
impacts of outgassing; now allow a 50% reduction in ventilation 
requirements for flooded battery systems using ERC technology 

• Efficiency also directly impacts watering maintenance & economics 
(primary end user consideration); reductions in watering maintenance 
are significant (often dramatic) 

• Goal is to achieve a flooded battery with the maintenance profile of a 
VRLA battery 



Summary 

• Gas evolution (outgassing) is an inherent characteristic 
of lead-acid batteries, particularly flooded designs. 

• Battery outgassing presents challenges to users and 
impacts facility, system, and maintenance planning & 
cost considerations. 

• There are a number of well established methodologies 
for mitigating the potential impacts of outgassing. 



Summary 

• ERC is now a proven technology; almost 25 years of history, 3.5 
million units installed worldwide. 

• Field results confirm increases in both  battery performance &  
lifecycle extension that translates into the real economic 
benefits as well as reduced maintenance, reduced HVAC  and 
improved safety. 

• ERC exploits many of the positive design and maintenance 
characteristics of a VRLA battery module with the superior 
service life of flooded batteries. 


	Hydrogen Gas Management�For Flooded Lead Acid Batteries 
	The Problem: Gas Evolution
	Objectives
	Open Circuit (equilibrium) potentials: �positive & negative electrodes (lead-acid)
	Impact of Charging Voltage on Gas Development Rate: �New Lead Selenium Cells 
	Impact of Charging Current & Over-Voltage�(New Lead Selenium Cells)
	Impact of Temperature on Charging Current & Voltage:�(New Lead Selenium Cells- Lead Acid)
	Primary Effects & Impact of Gas Evolution
	Primary Strategies for Mitigating Gas Evolution
	Primary Strategies for Mitigating Gas Evolution
	Primary Strategies for Mitigating Gas Evolution:�External Recombinant Catalysts (ERC)
	External Recombinant Catalyst: Concept
	External Recombinant Catalyst: Critical Design Considerations
	External Recombinant Catalyst: Critical Design Considerations
	External Recombinant Catalysts: Maintenance
	External Recombinant Catalysts
	ERC: Recombinant Efficiency
	Summary
	Summary

